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Book Review: From Perturbative to Constructive 
Renormalization 

From Perturbative to Constructive Renormalization, Vincent Rivasseau, 
Princeton University Press, Princeton, New Jersey, 1991. 

Constructive field theory has come of age. We now have not only an intro- 
ductory book (B. Simon (2)) and a general book describing the results 
(J. Glimm and A. Jaffe(3)), but also this new book containing the detailed 
description of its major achievements, namely, the construction of non- 
trivial (i.e., interacting) examples of models of relativistic quantum field 
theory coming from Lagrangians of two and three space-time dimensions, 
superrenormalizable or just renormalizable, and giving rise to theories 
verifying the Wightman axioms; or the related analysis of some critical 
points in the statistical mechanics of four-dimensional systems. 

In field theory this provided, historically, the first mathematical proof 
of the compatibility of special relativity and quantum mechanics: an 
achievement which does not yet seem to have been really noticed by many 
who are interested in such basic questions. In statistical mechanics it 
provided the first rigorous theory of a critical point of a (nontrivial) class 
of non-exactly soluble models. 

But in my view this is not the main achievement. 1 still find it some- 
what surprising that in the last 25 years, starting from the basic work of 
E. Nelson, cl) 1. Segal, J. Glimm, and A. Jaffe, it has become possible not 
only to show that the equations of field theory can be solved in some 
simple cases (at least), but to find actual error estimates in the evaluation 
of various quantities of physical significance, a feat which, after the 
development of renormalization theory, which showed that it was at least 
possible to hope for such estimates, seemed quite far in the future as 
the problem looked of a size comparable to problems for which one does 
not really hope to see a solution in his lifetime (like the ergodic problem 
for small systems, the three-body problem etc.), even for two- or three- 
dimensional systems (but spes ultima dea). 

The book is devoted mostly to the description of such estimates and 
to the basic techniques used to obtain them, which, particularly in the 
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approach followed by the author, are the detailed analysis of the analytic 
structure of classes of Feynman graphs and the cluster expansion used to 
put together the estimates and to get error estimates. This is a multiscale 
version of the cluster expansion originally developed to deal with the scalar 
theories in two dimensions by Glimm, Jaffe, and Spencer. The author 
illustrates its use in the Gross-Neveu model and in the (non-field-theoretic) 
~b 4 model of the critical point in statistical mechanics in four dimensions. 

The book is monographic: it describes the methods and techniques 
developed by the theoretical physics group at the Ecole Politechnique in 
Paris. The choice is understandable, as the material to cover is extremely 
wide and a description of the alternative methods devised to solve the same 
problems (usually later, but sometimes before, the work described) would 
have changed greatly the scope of the book. The drawback is that the book 
still has a look too close to a research paper and it seems therefore more 
useful to the experts rather than to those who, attracted by the claims heard 
about constructive field theory, want to understand it from scratch. But 
this was the intent of the author, as one can infer from the introduction. To 
expert it is an important event, a book on field theory lacking the usual 
annoying description of the trivial results on free fields or of other matters 
of similar importance which are inserted in books or review articles to 
make them more attractive to readers who do not really care to be 
attracted; but instead an uncompromising discussion of the main hard 
points and techniques, and, what is more important, an entirely consistent 
discussion based entirely on the renormalization group methods and ideas. 

It remains that a book which could complement the books of Simon 
and of Glimm and Jaffe, bridging the conceptual gap between them and 
this marvelous work on the real problems of field theory, is still missing 
and would be highly desirable. 

The book is in three parts. 
In the first part the author gives a concise introduction to quantum 

field theory (QFT) and one quickly finds oneself immersed in the details of 
the symbolic representation, in terms of Feynman graphs and trees, of the 
basic objects of QFT, namely the Schwinger functions. In fact, the author 
gives a convincing discussion of the equivalence between the Euclidean for- 
malism (wisely adopted throughout the book) and the operator formalism. 

In Part II the author introduces the renormalization group methods. 
The basic power counting ideas are illustrated by a nice extension of the 
Weinberg theorem. The usual Weinberg theorem shows that the contribu- 
tions to the Schwinger functions coming from graphs without superficially 
divergent subgraphs. The "uniform Weinberg theorem," discussed as an 
illustration of the basic techniques to find quantitative bounds on graph 
values, is that the above contributions are in fact bounded, to an arbitrary 
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order n, by K ". The extension of the theorem, discussed in the rest of the 
second part, is essentially a very refined form of the renormalization 
theorem, which yields not only finiteness, but bounds of Weinberg type: 
namely, it is shown that the sum of all nth-order contributions to a 
Schwinger function is bounded by Knn!: since there are n! Feynman graphs 
of order n, this shows that in spite of renormalization the size of perturba- 
tion theory terms is not worse (but of course this does not mean that each 
contribution is still bounded by K ", as the statement leaves the possibility 
that individual graphs values could be as large as n !, but in this case there 
would be not too many: in fact, the estimates are exactly of the latter type). 
The original proof (a major achievement coauthored by the author) was 
not based on the scaling decompositions associated with the renormal- 
ization group methods: here the author rewrites the proof, making the 
connection with the new techniques more transparent. One realizes that 
only minor changes have to be made in the old proof to transform it into 
the new one: this effort to adapt the original proof to the RG point of 
view is perhaps the reason that the proof is still not as transparent as it 
could probably look if the author had really tried to free himself from his 
previous work. 

In the analysis the author introduces in a nice way the concept of 
running coupling constants and the related effective expansion. He also 
introduces and discusses synthetically concepts like "useful and useless 
counterterms," which are typical of the Paris school and which it is very 
good finally to have summarized. 

The application to the planar ~b 4 theory and an (independent) proof of 
the associated 'tHooft convergence theorem are easy corollaries of the 
analysis. 

A sketch on the Lipatov bounds concludes the second part: it includes 
the many contributions of the author to the instanton and renormalon 
singularities of the perturbation expansion. 

Part III is even more ambitious and deals with the cluster expansion, 
which, in a few cases, leads to an expression of the Schwinger functions 
as a convergent expansion in suitable quantities. The reader should not 
worry about Knuth's philosophical statement quoted at the beginning 
(fortunately, such a most unhappy methodological idea is not really 
followed in the discussion). The author first explains the method in the case 
of a single scale, clearly showing that it consists of two separate parts: first 
an algorithm to convert the problem into that of computing the partition 
function of a lattice gas of interacting polymers and second a computation 
of the latter partition function using a suitable extension of the Mayer 
expansion (it is essentially the Gruber-Kunz expansion for polymers which 
developed out of various extensions of the original convergence proofs of 
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the Mayer expansion: it is an expansion discovered and forgotten many 
times, as it has applications in many areas). What makes the problem quite 
hard and novel is the necessity of dealing with infinitely many scales: thus, 
the above single-scale expansion has to repeated infinitely many times with 
the consequent extra convergence problems. This is illustrated in two 
problems: the critical point of ~b 4 and the Gross-Neveu model in two 
space-time dimensions: the first is not a QFT problem, but rather the 
analysis of a statistical mechanics system at the critical point. 

The author briefly discusses the QFT ultraviolet ~b 4 problem: he also 
shows the cultural courage of stating clearly and explicitly that "the 
problem remains a challenging issue": this is a rather unpopular statement, 
as it has become quite common to hear misquatations of some fundamental 
theorems on the triviality of the ~b 4 model in QFT as being the final 
solution to the question. 

Finally, the book concludes with an introduction to non-Abelian 
gauge QFTs, as the problem of their construction looks after the work 
described in the book, should one wish to attack it along the same lines. 

This monograph is a most welcome summa of the techniques 
developed (by the author and the Paris school) on constructive field 
theory. One does not appreciate the immense amount of work that has 
been put into writing the book unless one really tries to read carefully and 
reproduce one of the results (randomly singled out): the style is only 
apparently descriptive. Almost every line can be translated into rather 
substantial calculations and estimates, and this is the beauty of the work, 
and what makes it hard and rewarding to study it. 
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Book Review: Intersections of Random Walks 

Intersections of Random Walks, Gregory F. Lawler, Birkh~iuser, Boston, 
1991. 

When I was completing my dissertation, I recall meeting another graduate 
student and telling him that I was doing research on random walks. "Oh," 
he said, and paused. "But don't we know everything about random walks?" 
As Lawler's book clearly shows, we do indeed know a lot about random 
walks, and we know more now than when that conversation took place 
about 10 years ago, but there are still plenty of unanswered interesting 
questions to go around. 

For  example, consider the following question, which dominates this 
book: What can we say about the probability that the paths of two inde- 
pendent n-step random walks do not intersect? More precisely, let S 1 and 
S: be independent nearest-neighbor random walks in Z d that start at the 
origin, let Si(0, n] be the set of all points visited by S i at times 1, 2 ..... n, 
and let f (n )  be the probability that $1(0, n] and $2(0, n] are disjoint. What 
is the asymptotic behavior of f(n) as n ~  ~ ?  The answer, of course, 
depends on the dimension d. It is not too hard to prove that f(n) 
approaches some nonzero constant when d >  4, and that f (n )  is asymptotic 
to n 1 times a constant when d= 1 (notice that the paths are disjoint 
in one dimension only if one walk is never positive and the other is 
never negative). The cases of two, three, and four dimensions require 
considerably more work. It turns out t ha t f (n )  exhibits power law decay in 
two and three dimensions, while it decays like a power of a logarithm in 
the critical dimension d = 4. The value of the power is known rigorously in 
four dimensions, but not in two or three. 

The first two chapters lay the foundations for the rest of the book. 
Chapter 1 develops the basic results about random walks that are needed 
later, paying particular attention to explicit estimates of error in asymptotic 
results. Although the basic results are standard, the error estimates are not, 
and this chapter may well serve as a useful reference for researchers. 
Chapter 2 discusses the harmonic measure of a finite set, i.e., the proba- 
bility distribution of the first place that a random walk hits the set when 
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it starts from infinity. Bounds on harmonic measure are derived in terms of 
the diameter of the set, and these are used to prove upper bounds on the 
growth rate of diffusion-limited aggregation (DLA). 

Chapters 3-5 discuss the asymptotics of various intersection proba- 
bilities, includingf(n) defined above. Among other things, it is proven that 
the quantity f(n) decays like (log n) 1/2 in the critical dimension d = 4 ,  
while in two and three dimensions it decays according to a power law n ~. 
The exact value of ~ is not known rigorously, but remarkably its existence 
has been proven rigorously ]-in the sense that log f(n)/log n converges 
as n --, oo ]; this is done by showing that it equals an analogous exponent 
for Brownian motion. The value of ~ is believed to be exactly 5/8 in 
two dimensions (by a conformal invariance argument of Duplantier and 
Kwon) and close to 0.29 in three dimensions (from Monte Carlo work). 
Chapter 5 includes proofs that 0.5253... ~< ~ < 0.75 in two dimensions and 
0.25 ~< ~ < 0.5 in three; these are the best known rigorous bounds (except 
that the lower bound in two dimensions can be improved to 0.5397...). The 
two-dimensional bounds are proven using rigorous "conformal invariance" 
in the sense that an analytic function of a (complex-valued) Brownian 
motion is a time change of a Brownian motion. 

The last two chapters deal with self-avoiding walks. Chapter 6 is 
largely a literature review, and includes brief discussions of the following: 
the usual model in which each n-step self-avoiding walk has equal weight, 
and some of its nonrigorous scaling theory; the Domb-Joyce and Edwards 
models; kinetically growing walks (including the "myopic" or "true" self- 
avoiding walk and the "Laplacian" or "loop-erased" walk); and Monte 
Carlo simulations. Chapter 7 concentrates on rigorous results about the 
loop-erased walk, which may be defined by watching an ordinary random 
walk and erasing the "loop" that is created each time that it revisits a site 
(unless the first visit has since been erased). This walk is analyzed using the 
results from earlier chapters. It is proven that this model converges to 
Brownian motion in four or more dimensions, with a logarithmic scaling 
correction in the critical dimension of four. Below four dimensions, the 
process is more interesting: in particular, it is proven that the mean- 
squared displacement exponent is greater than or equal to the "Flory 
exponent" of 3/(d+ 2) in d =  2 and 3. In particular, this indicates that the 
loop-erased model is in a different universality class from the usual self- 
avoiding walk in three dimensions, which is believed to have an exponent 
of 0.59 .... 

The emphasis of the book is on rigorous proofs, and the proofs at 
times get involved in some fairly elaborate calculations. However, Lawler 
does a good job of pointing out the intuitive reasoning behind the proofs 
as we go along, and he also makes ample reference to the physics literature 
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where nonrigorous arguments have answered questions that have hitherto 
eluded rigorous solution. 

This is a "mathematics" book rather than a "physics" book, but it 
should be accessible to mathematically inclined graduate students in 
physics. One reason for this is that it is remarkably self-contained. The 
author describes the prerequisites as "a standard measure theoretic course in 
probability", including martingales (at a pretty basic level) and Brownian 
motion (which is only needed in Chapter 5 and the end of Chapter 7). 
Also, the book is carefully written, and although the proofs are often terse, 
the serious reader should be able to follow them without too much trouble. 
The number of misprints is minimal. An index of notation is included 
(I wish more authors would provide one). 

This book makes a welcome addition to the random walk literature. 
It provides an in-depth and coherent treatment of a field that has seen 
some exciting progress in the past decade, by one of the main contributors 
to that progress. With the help of the results and techniques described in 
this book, one can look forward to new rigorous developments in the 
fundamental subject of random walks and related models in statistical 
physics. 
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